Probabilistic Logarithmic-Space Algorithms for Laplacian Solvers

نویسندگان

  • Dean Doron
  • François Le Gall
  • Amnon Ta-Shma
چکیده

A recent series of breakthroughs initiated by Spielman and Teng culminated in the construction of nearly linear time Laplacian solvers, approximating the solution of a linear system Lx = b, where L is the normalized Laplacian of an undirected graph. In this paper we study the space complexity of the problem. Surprisingly we are able to show a probabilistic, logspace algorithm solving the problem. We further extend the algorithm to other families of graphs like Eulerian graphs (and directed regular graphs) and graphs that mix in polynomial time. Our approach is to pseudo-invert the Laplacian, by first “peeling-off” the problematic kernel of the operator, and then to approximate the inverse of the remaining part by using a Taylor series. We approximate the Taylor series using a previous work and the special structure of the problem. For directed graphs we exploit in the analysis the Jordan normal form and results from matrix functions. 1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Laplacian Systems in Logarithmic Space

We investigate the space complexity of solving linear systems of equations. While all known deterministic or randomized algorithms solving a square system of n linear equations in n variables require Ω(log 2 n) space, Ta-Shma (STOC 2013) recently showed that on a quantum computer an approximate solution can be computed in logarithmic space, giving the first explicit computational task for which...

متن کامل

Lx = b Laplacian Solvers and Their Algorithmic Applications

The ability to solve a system of linear equations lies at the heart of areas such as optimization, scientific computing, and computer science, and has traditionally been a central topic of research in the area of numerical linear algebra. An important class of instances that arise in practice has the form Lx = b, where L is the Laplacian of an undirected graph. After decades of sustained resear...

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

Sparse matrix factorizations for fast linear solvers with application to Laplacian systems

In solving a linear system with iterative methods, one is usually confronted with the dilemma of having to choose between cheap, inefficient iterates over sparse search directions (e.g., coordinate descent), or expensive iterates in well-chosen search directions (e.g., conjugate gradients). In this paper, we propose to interpolate between these two extremes, and show how to perform cheap iterat...

متن کامل

Algorithm Design Using Spectral Graph Theory

Spectral graph theory is the interplay between linear algebra and combinatorial graph theory. Laplace’s equation and its discrete form, the Laplacian matrix, appear ubiquitously in mathematical physics. Due to the recent discovery of very fast solvers for these equations, they are also becoming increasingly useful in combinatorial optimization, computer vision, computer graphics, and machine le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017